463 research outputs found

    Adiabatic invariance with first integrals of motion

    Get PDF
    The construction of a microthermodynamic formalism for isolated systems based on the concept of adiabatic invariance is an old but seldom appreciated effort in the literature, dating back at least to P. Hertz [Ann. Phys. (Leipzig) 33, 225 (1910)]. An apparently independent extension of such formalism for systems bearing additional first integrals of motion was recently proposed by Hans H. Rugh [Phys. Rev. E 64, 055101 (2001)], establishing the concept of adiabatic invariance even in such singular cases. After some remarks in connection with the formalism pioneered by Hertz, it will be suggested that such an extension can incidentally explain the success of a dynamical method for computing the entropy of classical interacting fluids, at least in some potential applications where the presence of additional first integrals cannot be ignored.Comment: 2 pages, no figures (REVTeX 4

    Steady non-ideal detonations in cylindrical sticks of expolsives

    Get PDF
    Numerical simulations of detonations in cylindrical rate-sticks of highly non-ideal explosives are performed, using a simple model with a weakly pressure dependent rate law and a pseudo-polytropic equation of state. Some numerical issues with such simulations are investigated, and it is shown that very high resolution (hundreds of points in the reaction zone) are required for highly accurate (converged) solutions. High resolution simulations are then used to investigate the qualitative dependences of the detonation driving zone structure on the diameter and degree of confinement of the explosive charge. The simulation results are used to show that, given the radius of curvature of the shock at the charge axis, the steady detonation speed and the axial solution are accurately predicted by a quasi-one-dimensional theory, even for cases where the detonation propagates at speeds significantly below the Chapman-Jouguet speed. Given reaction rate and equation of state models, this quasi-one-dimensional theory offers a significant improvement to Wood-Kirkwood theories currently used in industry

    The Approach to Ergodicity in Monte Carlo Simulations

    Get PDF
    The approach to the ergodic limit in Monte Carlo simulations is studied using both analytic and numerical methods. With the help of a stochastic model, a metric is defined that enables the examination of a simulation in both the ergodic and non-ergodic regimes. In the non-ergodic regime, the model implies how the simulation is expected to approach ergodic behavior analytically, and the analytically inferred decay law of the metric allows the monitoring of the onset of ergodic behavior. The metric is related to previously defined measures developed for molecular dynamics simulations, and the metric enables the comparison of the relative efficiencies of different Monte Carlo schemes. Applications to Lennard-Jones 13-particle clusters are shown to match the model for Metropolis, J-walking and parallel tempering based approaches. The relative efficiencies of these three Monte Carlo approaches are compared, and the decay law is shown to be useful in determining needed high temperature parameters in parallel tempering and J-walking studies of atomic clusters.Comment: 17 Pages, 7 Figure

    Proton propagation in nuclei studied in the (e,e’p) reaction

    Get PDF
    Proton propagation in nuclei was studied using the (e,e’p) reaction in the quasifree region. The coincidence (e,e’p) cross sections were measured at an electron angle of 50.4° and proton angles of 50.1°, 58.2°, 67.9°, and 72.9° for 12C, 27Al, 58Ni, and 181Ta targets at a beam energy of 779.5 MeV. The average outgoing proton energy was 180 MeV. The ratio of the (e,e’p) yield to the simultaneously measured (e,e’) yield was compared to that calculated in the plane-wave impulse approximation and an experimental transmission defined. These experimental transmissions are considerably larger (a factor of ∼2 for 181Ta) than those one would calculate from the free N-N cross sections folded into the nuclear density distribution. A new calculation that includes medium effects (N-N correlations, density dependence of the N-N cross sections and Pauli suppression) accounts for this increase

    Cell shape analysis of random tessellations based on Minkowski tensors

    Full text link
    To which degree are shape indices of individual cells of a tessellation characteristic for the stochastic process that generates them? Within the context of stochastic geometry and the physics of disordered materials, this corresponds to the question of relationships between different stochastic models. In the context of image analysis of synthetic and biological materials, this question is central to the problem of inferring information about formation processes from spatial measurements of resulting random structures. We address this question by a theory-based simulation study of shape indices derived from Minkowski tensors for a variety of tessellation models. We focus on the relationship between two indices: an isoperimetric ratio of the empirical averages of cell volume and area and the cell elongation quantified by eigenvalue ratios of interfacial Minkowski tensors. Simulation data for these quantities, as well as for distributions thereof and for correlations of cell shape and volume, are presented for Voronoi mosaics of the Poisson point process, determinantal and permanental point processes, and Gibbs hard-core and random sequential absorption processes as well as for Laguerre tessellations of polydisperse spheres and STIT- and Poisson hyperplane tessellations. These data are complemented by mechanically stable crystalline sphere and disordered ellipsoid packings and area-minimising foam models. We find that shape indices of individual cells are not sufficient to unambiguously identify the generating process even amongst this limited set of processes. However, we identify significant differences of the shape indices between many of these tessellation models. Given a realization of a tessellation, these shape indices can narrow the choice of possible generating processes, providing a powerful tool which can be further strengthened by density-resolved volume-shape correlations.Comment: Chapter of the forthcoming book "Tensor Valuations and their Applications in Stochastic Geometry and Imaging" in Lecture Notes in Mathematics edited by Markus Kiderlen and Eva B. Vedel Jense

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure

    Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Full text link
    Identified mid-rapidity particle spectra of π±\pi^{\pm}, K±K^{\pm}, and p(pˉ)p(\bar{p}) from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor (RdAuR_{dAu}) between protons (p+pˉ)(p+\bar{p}) and charged hadrons (hh) in the transverse momentum range 1.2<pT<3.01.2<{p_{T}}<3.0 GeV/c is measured to be 1.19±0.051.19\pm0.05(stat)±0.03\pm0.03(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of (p+pˉ)/h(p+\bar{p})/h in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.Comment: 6 pages, 4 figures, 1 table. We extended the pion spectra from transverse momentum 1.8 GeV/c to 3. GeV/

    Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV

    Full text link
    We present the first measurement of directed flow (v1v_1) at RHIC. v1v_1 is found to be consistent with zero at pseudorapidities η\eta from -1.2 to 1.2, then rises to the level of a couple of percent over the range 2.4<η<42.4 < |\eta| < 4. The latter observation is similar to data from NA49 if the SPS rapidities are shifted by the difference in beam rapidity between RHIC and SPS. Back-to-back jets emitted out-of-plane are found to be suppressed more if compared to those emitted in-plane, which is consistent with {\it jet quenching}. Using the scalar product method, we systematically compared azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure

    Azimuthal anisotropy: the higher harmonics

    Full text link
    We report the first observations of the fourth harmonic (v_4) in the azimuthal distribution of particles at RHIC. The measurement was done taking advantage of the large elliptic flow generated at RHIC. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding

    Plasma Wakefield Acceleration with a Modulated Proton Bunch

    Get PDF
    The plasma wakefield amplitudes which could be achieved via the modulation of a long proton bunch are investigated. We find that in the limit of long bunches compared to the plasma wavelength, the strength of the accelerating fields is directly proportional to the number of particles in the drive bunch and inversely proportional to the square of the transverse bunch size. The scaling laws were tested and verified in detailed simulations using parameters of existing proton accelerators, and large electric fields were achieved, reaching 1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found in this case.Comment: 9 pages, 7 figure
    corecore